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The dynamics, prediction, and control of
wing rock in high-performance aircraft

By Brad S. Liebst

Air Force Institute of Technology, Wright-Patterson Air Force Base,
OH 45433, USA

This study is an investigation of the nonlinear aircraft behaviour known as wing rock.
An eight-state F-15 model is analysed by using bifurcation theory and root-locus
techniques. The wing-rock onset point is identified, and small perturbation analysis
is used to linearize the equations of motion about this point. The eigenstructure
of the model is analysed and is used to identify the stability modes involved in this
motion. A procedure is developed to predict wing-rock onset, and the critical stability
derivatives involved in this behaviour are identified. The developed procedure is
applied to existing F-15 data. The results show that wing rock is an unstable Dutch-
roll motion and the developed wing-rock prediction parameter is accurate to within
1◦ of onset angle of attack (AOA).

Various simple feedback control schemes are evaluated to determine how to delay
the onset of wing rock. The most effective control scheme is found to be a combination
of roll rate and sideslip fixed gain feedback to the ailerons yielding a 6◦ improvement
in the onset AOA of wing rock.

Keywords: wing rock; aircraft dynamics; aircraft controls; nonlinear dynamics;
flight mechanics; aircraft stability and control

1. Introduction

Many modern-day combat aircraft exhibit lightly damped or constant-amplitude
rolling oscillations at moderate to high angle of attack (AOA). These motions are
commonly referred to as wing rock. Wing rock can have a wide-ranging effect on an
aircraft’s ability to complete its mission. Wing rock may present itself as a minor
nuisance during noncritical manoeuvring, or as a major headache while trying to
track an enemy target. For some configurations, wing rock is an early warning of
impending departure or spin entry (Nguyen et al . 1980). In some aircraft, the severity
of wing rock could create sufficient inertial and kinematic coupling to cause AOA
excursions leading to loss of control. This problem may present itself during the
landing phase as well as during manoeuvring flight.

Two different types of wing rock have been identified by previous research (Nguyen
et al . 1980). The first is characterized by unsteady lateral motions at moderate to
high AOA. These motions exhibit small-amplitude intermittent roll oscillations and
may be a function of pilot–vehicle interaction. Here the roll motion is not periodic.
This type of wing rock is normally associated with low-airspeed, high-AOA flight in
gusty conditions such as during approach and landing. The second type of wing rock
is manifested as an initially diverging oscillation which becomes periodic in nature
and is generated by a limit-cycle mechanism. This motion is characterized by very
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large changes in roll angle. The second form of wing rock is normally associated
with high-AOA manoeuvring such as in close-in air combat. Flight procedures can
normally be changed to avoid the first type of wing rock without greatly affecting
mission accomplishment, but the same cannot be said about type two. If a combat
aircraft is not able to track a target due to wing rock, it becomes obvious that mission
accomplishment has been degraded significantly. This study deals with the second
type of wing rock.

The mechanisms which cause wing rock are not fully understood. It appears that
wing rock is triggered by some type of flow asymmetry, causing initial negative roll
damping, and then sustained by some type of nonlinear aerodynamic roll damping
(Hsu & Lan 1985). Therefore, aerodynamically, wing rock may be caused by flow
separation at low speeds or shock-induced separations at transonic speeds, oscillatory
aerodynamic loads produced by aircraft motion, or vortex flow dynamics over the
wing and fuselage (Planeaux & Barth 1988). From the stability point of view it
is postulated that wing rock is associated with a sign change in Cnβ , reduced and
nonlinear roll damping, or instability of one or more of the aircraft’s longitudinal
and/or lateral control modes.

Previous studies have already developed several parameters which provide indica-
tions of aircraft behaviour at high AOA. Notable are the lateral control divergence
parameter (LCDP) and Cnβ,dynamic, or some combination of the two (Nguyen et al .
1980). These parameters have been used to predict aircraft departure sensitivity and
general departure characteristics. These parameters provide general estimates of air-
craft behaviour at high AOA, they are not able to specifically predict aircraft motion
at high AOA. Both of these parameters were developed for MIL-F-8785C and have
been carried forward in MIL-STD-1797A.

This study takes another step forward and develops a parameter that specifically
predicts the onset of wing rock. Using this parameter, a procedure is developed which
allows an aircraft designer, given certain stability derivatives and inertia character-
istics, to predict the onset of wing rock in his design without using complicated
software and costly computer time. This study also attempts to identify the relative
importance of the various stability derivatives which contribute to wing rock.

Finally, various simple feedback-control schemes are evaluated to determine how
to delay the onset of wing rock. Liebst & DeWitt (1997) and others (Davison
1992; Araujo & Singh 1997; Littleboy & Smith 1997) have examined the control
of wing rock previously with various degrees of success. The controllers developed by
Araujo & Singh (1997) and Littleboy & Smith (1997) were the following: complicated
model reference adaptive and dynamic inversion. In the present research, significant
improvements are demonstrated by using a simple fixed-gain combined roll rate and
sideslip feedback to the ailerons.

2. Aircraft descriptions and equations of motion

In this section, the aircraft used is presented and the model equations of motion are
developed.

The nonlinear equations of motion used in this study are linearized by using small-
disturbance theory. These equations are linearized about the point at which wing rock
begins during an elevator sweep. The resulting linear expressions are then used in
conjunction with eigenvector data in an attempt to parametrize wing-rock motion.
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Normally, the small-angle assumption (both the perturbations and the equilibrium
angles are assumed to be small enough that the sines of these angles are approxi-
mately equal to the angles themselves and the cosines are equal to one) is also made
to further simplify the perturbed equations of motion. In this study, some of the
equilibrium angles are fairly large, so the small-angle assumption will not be made
and the sines and cosines will take on their actual values.

Since wing rock is highly nonlinear, we need an efficient analysis strategy to study
its behaviour. A number of previous studies have demonstrated that bifurcation anal-
ysis can be used to predict and characterize many nonlinear high-AOA behaviours
of fighter aircraft (Barth 1987; Beck 1989; Carroll & Mehra 1982; Planeaux & Barth
1988; Zagaynov & Goman 1984). This study uses bifurcation theory as the first step
in determining aircraft eigenstructure at the onset of wing rock. The reader is referred
to Seydel (1988) for more information on bifurcation theory.

There are several software packages available to accomplish the required bifur-
cation calculations. This study employed AUTO, a FORTRAN package written by
Doedel & Kervenez (1984). AUTO was selected because it provided the greatest
flexibility and required the least modification to fulfil the needs of the present study.

Starting from a known equilibrium point, AUTO first generates the equilibrium
branch containing this point. It then computes the points along the equilibrium
branch by a process known as path following. This process works by repeatedly
using known solution points to calculate nearby solutions and thereby trace out the
equilibrium branch. As the path following is performed, the software detects and
locates limit points, Hopf bifurcations and other bifurcation points. The program
then stores information required to allow continuation of new branches that grow
from these bifurcation points. AUTO is capable of returning to each of these points
and performing path following along the corresponding solution branches. Resulting
equilibrium branch output includes values of all states and parameters.

AUTO also possesses the ability to perform path following along periodic branches,
and can thus provide limit-cycle data and some measure of the amplitude and period
of the oscillatory motion.

For the present study, an eigenvector solver was added to AUTO to determine
modal information along the solution branches. The eigenvector software was taken
from Matrix eigensystem routines (Smith 1974), and adapted to meet the needs of
this study.

This study uses the F-15 Eagle aircraft to validate its findings. A description of
this aircraft is given in Nolan (1992). The equations of motion used in this study are
nonlinear. These nonlinear relationships are based on the following assumptions.

1. The aircraft is a rigid body.

2. The aircraft has constant mass and mass properties.

3. The x–z plane is a plane of symmetry.

4. The Earth provides a fixed reference frame in space.

5. The true velocity, Vtr, AOA, α, and sideslip angle, β, are defined as shown in
figure 1.
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Figure 1. Aircraft velocity components.

Based on the above assumptions, the six-degrees-of-freedom (DOF) equations of
motion are given in terms of non-dimensional aerodynamic force and moment coef-
ficients (McRuer et al . 1973)

α̇ = q −
[
QS

mVtr
Cx − g

Vtr
sin θ + r sinβ

]
sinα secβ

+
[
QS

mVtr
Cz +

g

Vtr
cos θ cosφ− p sinβ

]
cosα secβ, (2.1)

β̇ = −
[(

QS

mVtr
Cx − g

Vtr
sin θ

)
sinβ + r

]
cosα

+
[
QS

mVtr
Cy +

g

Vtr
cos θ sinφ

]
cosβ

−
[(

QS

mVtr
Cz − g

Vtr
cos θ cosφ

)
sinβ − p

]
sinα, (2.2)

V̇tr = Vtr

[
QS

mVtr
Cx − g

Vtr
sin θ

]
cosα cosβ

+ Vtr

[
QS

mVtr
Cy +

g

Vtr
cos θ sinφ

]
sinβ

+ Vtr

[
QS

mVtr
Cz +

g

Vtr
cos θ cosφ

]
sinα cosβ, (2.3)

ṗ =
[
−
[
Iz − Iy
Ix

+
I2
xz

IxIz

]
qr +

[
1− Iy − Ix

Iz

]
Ixz
Ix
pq

+
QSb

Ix

[
C1 +

Ixz
Iz
Cn

]][
1− I2

xz

IxIz

]−1

, (2.4)
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q̇ =
QSc

Iy
Cm +

Iz − Ix
Iy

pr +
Ixz
Iy

(r2 − p2), (2.5)

ṙ =
[[

I2
xz

IxIz
− Iy − Ix

Iz

]
pq −

[
1 +

Iz − Iy
Ix

]
Ixz
Iz
qr

+
QSb

Iz

[
Ixz
Ix
C1 + Cn

]][
1− I2

xz

IxIz

]−1

, (2.6)

φ̇ = p+ q tan θ sinφ+ r tan θ cosφ, (2.7)

θ̇ = q cos θ − r sin θ. (2.8)

The expansions of the aerodynamic force and moment coefficients were extracted
from a McDonnell Aircraft Company F-15 simulator program (McDonnell Aircraft
Company 1976, 1981). The coefficients were obtained from simulator data (com-
bined wind-tunnel and flight-test data) tabulated for Mach numbers from 0.3–2.5
and from 0–80 000 feet. Mach number and altitude dependence had been eliminated
by selecting data at 0.6 Mach and 20 000 feet. The data were curve-fitted to multi-
variable polynomials to provide a more efficient computer model. The equations are
as follows:

Cx = CL(α, δe) sinα− CD(α, δe) cosα+
T

(QS)
, (2.9)

Cy = Cyβ (α, |β|, δe)β + Cyδa(α)δa+ Cyδr(α, |δr|)δr

+
[

b

2Vtr

]
[Cyr(α)r + Cyp(α)p], (2.10)

Cz = −CL(α, δe) cosα− CD(α, δe) sinα, (2.11)

Cl = Clβ (α, |β|)β + Clδa(α, δe)δa+ Clδr(α, |δr|)δr

+
[

b

2Vtr

]
[Clr(α)r + Clp(α)p], (2.12)

Cm = Cmα(α, δe)α−
[

c

2Vtr

]
Cmq(α)q +

Tδt

(Qsc)
, (2.13)

Cn = Cnβ (α, |β|, δe)β + Cnδa(α)δa+ Cnδr(α, |β|, |δr|, δe)δr

+
[

b

2Vtr

]
[Cnp(α)p+ Cnr(α)r]. (2.14)

Each of the aerodynamic coefficients and stability derivatives in the above equations
are functions of the aircraft states and the control-surface deflections shown. For
a more detailed description of the aerodynamic-coefficient development, see Barth
(1987). With these coefficients, the eight-state F-15 model is fully developed.

A single solution to the equilibrium system is required to begin the bifurcation con-
tinuation process. Straight, wings-level flight was chosen as a starting point because
equilibrium solutions to the equations of motion can be found easily. Based on these
assumptions, most of the states are zero. By then simplifying the system and spec-
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Figure 2. α bifurcation diagram for the F-15.

ifying one of the remaining states, the system can be solved simultaneously. The
specified parameter chosen was AOA and its initial value was 10◦.

3. Bifurcation analysis

The bifurcation parameter chosen for the bifurcation study was the F-15 stabilator
deflection. Angle of attack was increased in small steps as stabilator deflection was
increased (in the negative direction) from the starting point. This results in a straight
pull-up manoeuvre being flown by the model. The point at which wing rock begins
will be referred to as the trigger point.

The bifurcation diagram of AOA for the stabilator sweep is shown in figure 2.
Branch 1, the branch continued from the initial starting point, has zero lateral states
(β, p, q, r) along its entire length. Branches 2–5, which all result from pitchfork bifur-
cations, have non-zero lateral states and each represents two branches which are
symmetric with respect to the x–z plane. The periodic branch emanating from the
Hopf bifurcation on branch 1 is also shown.

If we assume that the aircraft is in equilibrium at the starting point of α = 10◦,
then, as the stabilator deflection is increased (more negative) statically, the equilib-
rium point progresses along branch 1. This would be true assuming no disturbance,
such as a wind gust, is large enough to result in a jump to another stable state along
another equilibrium branch or periodic branch. As the stabilator deflection reaches
the value at which the Hopf bifurcation occurs, branch 1 becomes unstable. A Hopf
bifurcation occurs when a complex-conjugate pair of poles crosses the imaginary
axis into the right half-plane. The unstable equilibrium is an unrealizable state since
the smallest disturbance will cause the state trajectory to diverge from equilibrium.
Therefore, as the stabilator deflection increases past the critical value at the Hopf
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Figure 3. F-15 flight-test results.

Table 1. State values at the Hopf point for F-15

α β roll rate pitch rate yaw rate θ φ Vtr

21.5◦ 0 0 0 0 13◦ 0 275 feet s−1 (84 m s−1)

bifurcation point, a jump must occur to another attractor, in this case, to the limit
cycle represented by periodic branch 1 at this elevator deflection. The phenomenon
which causes this jump occurs during the transition from the stable equilibrium por-
tion of branch 1 to the stable limit-cycle portion of periodic branch 1. This jump
actually represents the onset of wing rock, and the trigger point is the Hopf bifur-
cation point located on branch 1. This point occurs at α = 21.5◦. Wing rock begins
here, and we will demonstrate later on that this coincides with the complex-conjugate
pair of Dutch-roll eigenvalues migrating into the right half-plane. This point will be
critical to the remainder of the analysis. The state values at this Hopf bifurcation
point are presented in table 1. These findings agree reasonably well with previous
F-15 flight test results (Air Force Flight Test Center 1976) for Mach equal to 0.6.
These test results are shown in figure 3.

4. Eigenvalue analysis

The AUTO routine was modified such that the eigenvalues and eigenvectors of the
state matrix at all solution points were returned in addition to the bifurcation data.
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Table 2. Eigenvalues at α = 10.0 and 21.5◦ for F-15

α = 10.0◦ α = 21.5◦

short period mode −0.53± 1.43i −0.41± 1.2i
phugoid mode −0.003± 0.109i −0.040± 0.15i
Dutch-roll mode −0.28± 4.3i 0.0± 1.10i
roll mode −0.798 −0.491
spiral mode −0.023 −0.290

Figure 4. Root locus for the F-15 varying α.

Thus, normal root loci with AOA can be generated. Table 2 shows the eigenvalues for
α = 10.0 and 21.5◦. The F-15 displays the classic longitudinal and lateral stability
modes of a conventional aircraft design.

The 21.5◦ case shows the point where wing rock is triggered. As can be seen in
table 2 the Dutch-roll eigenvalues are on the imaginary axis at this point and migrate
into the right half-plane as α increases. This is easier to see in figure 4, which depicts
a conventional root-locus plot for varying α. Throughout this AOA change, the plot
shows that as α is increased, the short-period mode initially becomes more stable
then moves toward the right half-plane. The phugoid mode moves towards increased
stability during the α increase. From figure 4 it is concluded that the longitudinal
modes have little, if any, effect on the wing-rock behaviour. As can be seen, the
roll mode moves toward the origin and the spiral mode moves further into the left
half-plane and continues toward increasing stability. The roll mode does not cross
into the right half-plane over the AOA range depicted. The Dutch-roll mode on
the other hand, moves toward the right half-plane as α is increased. The motion is
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neutrally stable at α = 21.5◦ and becomes unstable shortly thereafter. The point of
neutral stability coincides with the Hopf bifurcation point on branch 1 (figure 2).
The Dutch-roll mode continues further into the right half-plane as α is increased
and eventually moves to the positive real axis. From the root loci, it appears that
wing rock is an unstable Dutch-roll motion as predicted by several authors (Nguyen
et al . 1980; Nguyen & Ross 1988; Ross 1978). At low AOA, Dutch-roll is normally
approximated by a flat motion which does not contain much roll-angle change. As α
is increased, previous research has shown that this motion becomes predominantly
a roll oscillation with little yaw change (Nguyen et al . 1980). Thus we would expect
that the eigenvector data would show that the critical states involved in this unstable
motion are β, p and φ.

5. Linearization around the trigger point

In order to derive an expression that would indicate that wing rock has been trig-
gered, the nonlinear equations of motion have been linearized about the solution
point which places the Dutch-roll eigenvalues on the imaginary axis (Hopf bifurcation
point). The following are the linearized equations assuming Cx0 = Cy0 = Cz0 = 0:

∆α̇ =
[
g

V0
(sin θ0 cosα0 − cos θ0 sinα0) +

QS

mV0
(Czα cosα0 − Cxα sinα0)

]
∆α

+ ∆q +
(
g

V0
cos θ0 sinα0 − g

V0
sin θ0 cosα0

)
∆θ, (5.1)

∆β̇ =
[
g

V0
(sin θ0 cosα0 − sinα0 cos θ0) +

QS

mV0
Cyβ

]
∆β +

[
QS

mV0
Cyp + sinα0

]
∆p

− cosα0∆r +
g

V0
cos θ0∆φ, (5.2)

∆ṗ = A((Clα +BCnα)∆α+ (Clβ +BCnβ )∆β + (Clp +BCnp)∆p

+ (Clr +BCnr)∆r + (Clv +BCnv)∆V ), (5.3)

∆q̇ =
Qsc

Iz
(Cmα∆α+ Cmq∆q + Cmv∆V ), (5.4)

∆ṙ = A((BClβ + Cnβ )∆β + (BClp + Cnp)∆p

+ (BClr + Cnr)∆r + (BClv + Cnv)∆V ), (5.5)

∆θ̇ = ∆q, (5.6)

∆φ̇ = ∆p, (5.7)

∆V̇ =
[
(g sin θ0 sinα0 + g cos θ0 cosα0) +

QS

mV0
(Cxα cosα0 + Czα sinα0)

]
∆α

+ (−g cos θ0 cosα0 − g sinα0 sin θ0)∆θ. (5.8)

The three steady-state conditions of α0, θ0 and V0 have been left as variables at this
point to allow their influence to be seen in expression development. For the linearized
equations (5.1)–(5.8), A and B are defined in equation (5.9) and will remain as such
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Figure 5. Magnitude of wing-rock eigenvector at the trigger point.

throughout the remainder of this document:

A =
Qsb

Ix

/[
1− I2

xz

IxIz

]
, B =

Ixz
Ix
. (5.9)

6. Eigenvector analysis

For this study, the AUTO routine was modified to produce eigenvector data at each
solution point. Figure 5 shows the relationship of the relative magnitudes of each
of the components of the Dutch-roll eigenvector at AOA = 21.5◦ for the F-15. The
only states that have a magnitude large enough to be seen are p, φ and β. The
vectors show that longitudinal and lateral motion are in fact decoupled. The critical
states involved in Dutch-roll behaviour are now p, φ and β. The magnitude of r
is so small that it can be disregarded. The vectors confirm previous research that
Dutch-roll motion consists of a significant amount of yaw at low AOA, and as AOA is
increased the motion becomes dominated by rolling motion (Nguyen et al . 1980). At
low AOA, Dutch-roll is often approximated by a two-DOF expression eliminating the
roll contribution. When wing rock is triggered at higher α, the eigenvector structure
of the system reveals that only the primary states of β, φ and p need remain. Thus
a lower-order approximate system will be based solely on the following equations:

∆β̇ =
[
g

V0
sin(θ0 − α0) +

QS

mV0
Cyβ

]
∆β +

[
QS

mV0
Cyp + sinα0

]
∆p+

g

V0
cos θ0∆φ,

(6.1)

∆ṗ = A(Clβ +BCnβ )∆β +A(Clp +BCnp)∆p, (6.2)
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∆φ̇ = ∆p. (6.3)

7. Characteristic equation

In order to study the triggering of wing rock, the characteristic equation of the new
approximate state equations must be determined. The characteristic equation of the
above approximate equations is shown below in expanded polynomial form. The
spiral mode has been eliminated from this approximation:

s3 −
[
g

V0
sin(θ0 − α0) +

QS

mV0
Cyβ +A(Clp +BCnp)

]
s2

+
[
A(Clp +BCnp)

[
g

V0
sin(θ0 − α0) +

QS

mV0
Cyβ

]
−A(Clβ +BCnβ )

(
QS

mV0
Cyp + sinα0

)]
s− g

V0
A(Clβ +BCnβ ) cos θ0 = 0.

(7.1)

The expression itself looks fairly complicated, and examining it does not immedi-
ately reveal anything. Upon examining equation (5.9) closely, equation (7.1) may be
further simplified. For fighter-type aircraft, most of the mass is concentrated along
the aircraft’s x-axis. This mass distribution leads to a relatively small resistance to
rotation about the x-axis. Three products of inertia, Ixy, Iyz and Ixz, appear in the
aircraft equations of motion for a rigid aircraft. By virtue of symmetry, Ixy and Iyz
are both equal to zero. Ixz on the other hand is not zero in most cases. Ixz can be
thought of as the measure of the uniformity of mass distribution about the x-axis.
The axis about which Ixz is equal to zero is defined as the principle inertia axis,
and the mass of the aircraft can be considered to be concentrated on this axis. The
inertia axis is rarely coincident with the aircraft centreline, therefore the Ixz param-
eter cannot be set to zero. However, for fighter-type aircraft this term is relatively
small when compared to the Iz and Iy terms. Therefore, the Ixz/Iz term is small in
comparison to one. The same is true of the I2

xz/IxIz term in the variable A. Thus A
may now be represented by

A =
Qsb

Ix
, (7.2)

and the terms multiplied by B can be disregarded due to their relative size. The
polynomial is now

s3 −
[
g

V0
sin(θ0 − α0) +

QS

mV0
Cyβ +AClp

]
s2 +

[
AClp

[
g

V0
sin(θ0 − α0) +

QS

mV0
Cyβ

]
−AClβ

(
QS

mV0
Cyp + sinα0

)]
s−AClβ

g

V0
cos θ0 = 0. (7.3)

The Dutch-roll mode lies on the imaginary axis at the trigger point. Therefore, at
this point it becomes convenient to view the polynomial in the frequency domain. At
the trigger point, the real portion of s is zero, so s can be replaced by iω. Rewriting
the polynomial in simpler form, the expression becomes

A1s
3 −A2s

2 +A3s−A4 = 0, (7.4)
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now substituting s = iω

−A1iω3 +A2ω
2 +A3iω −A4 = 0, (7.5)

grouping the real and imaginary parts yields

(+A2ω
2 −A4) + (−A1ω

3 +A3ω)i = 0. (7.6)

Each portion of equation (7.6) must equal zero for the equality to hold. This results
in two equalities

+A2ω
2 −A4 = 0, (7.7)

−A1ω
3 +A3ω = 0. (7.8)

The wing-rock motion occurs at a frequency other than zero so an ω may be factored
from equation (7.8) yielding

−A1ω
2 +A3 = 0. (7.9)

Multiplying equation (7.7) by A1 and equation (7.9) by A2, and subsequently adding
the expressions will remove frequency dependence and produce

A2A3 −A1A4 = 0. (7.10)

When equation (7.10) is satisfied, wing rock is triggered. The coefficients are

A1 = 1,

A2 =
[
g

V0
sin(θ0 − α0) +

QS

mV0
Cyβ +AClp

]
,

A3 = AClp

[
g

V0
sin(θ0 − α0) +

QS

mV0
Cyβ

]
−AClβ

[
QS

mV0
Cyp + sinα0

]
,

A4 = AClβ
g

V0
cos θ0.


(7.11)

The left-hand side of equation (7.10) will be labelled Xφ. Thus when Xφ is zero,
wing rock is triggered. The expanded expression for the trigger parameter Xφ is

Xφ =
[
g

V0
sin(θ0 − α0) +

QS

mV0
Cyβ +AClp

]
+
[
AClp

[
g

V0
sin(θ0 − α0) +

QS

mV0
Cyβ

]
−AClβ

[
QS

mV0
Cyp + sinα0

]]
−
(
AClβ

g

V0
cos θ0

)
. (7.12)

8. Validation of expression

The goal of this study is to be able to predict wing rock without using complicated
software such as the AUTO routine. Thus, the trigger point, Xφ, should go to zero
at the Hopf point predicted by AUTO. AUTO has provided the state values at the
equilibrium points. Using this information, Xφ has been calculated over the AOA
range of interest. These data are presented as the solid line in figure 6.

As can be seen in figure 6, the trigger parameter becomes zero near 22◦. Here, the
trigger parameter predicts wing-rock onset at an AOA of 22◦. The bifurcation anal-
ysis predicted the AOA for wing-rock onset as 21.5◦. Hence, for the F-15, the flight
test results (Air Force Flight Test Center 1976) shown in figure 3, the bifurcation
results, and the trigger parameter results all correlate well.
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Figure 6. Trigger parameter versus AOA for the F-15.

9. Prediction procedure

Given the aircraft stability derivatives, inertia data and physical characteristics, we
should be able to predict the AOA and airspeed at which an aircraft will wing rock
by using the following iterative procedure. The following procedure is based on an
aircraft operating at an equilibrium condition.

1. The first step in this process is to choose an AOA as an initial starting point.
This step will provide α0.

2. At an equilibrium condition the moment coefficient will equal zero. Therefore,
with Cm = 0 and Cm(α0, δe0) the elevator deflection can be found.

3. By combining the following equations, the initial pitch angle can be found
(McRuer et al . 1973).

mg sin θ0 = CX0
1
2ρV

2
0 S, (9.1)

−mg cos θ0 = CZ0
1
2ρV

2
0 S, (9.2)

with

CX0 = f(α0, δe0), (9.3)
CZ0 = f(α0, δe0), (9.4)

yields

θ0 = tan−1(CX0/CZ0). (9.5)
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4. With the initial AOA, pitch angle and elevator deflection, equation (9.1) can
be rewritten to solve for V0.

V0 =
[

2mg sin θ0

CX0ρS

]1/2

. (9.6)

5. There is now enough information to compute Xφ from equation (7.12).

6. Repeat steps 1–5 until the angle where Xφ equals zero is found. A sign change
in the triggering parameter would indicate that the step size is too big and the
critical angle has already been exceeded.

10. Critical stability derivatives

A quick inspection of equation (7.12) reveals that four stability derivatives are critical
to predicting the onset of wing rock. These derivatives are: Cyp , side force due to roll
rate; Cyβ , side force due to sideslip; Clp , roll damping; and Clβ , rolling moment due
to sideslip.

The contribution of Cyp to the trigger parameter is in fact small. The sideforce
coefficient due to roll-rate parameter is normally two orders of magnitude smaller
that the sine of the equilibrium AOA, and for many modern configurations Cyp is
zero (Roskam 1979). Therefore, Cyp has little or no effect on the actual value of the
trigger parameter and its contribution can be neglected.
Cyβ , the sideforce due to sideslip, provides a small contribution to theA2 coefficient

in the trigger parameter expression. This contribution is one order of magnitude
smaller than the contribution of the roll moment due to sideslip. While the derivative
is large enough to be considered, its contribution does not require any significant
analysis.

The findings of this study agree with the findings of Johnston et al . (1980). The
critical stability derivatives contributing to the onset of wing rock are: Clp , roll
damping; and Clβ , roll moment due to sideslip.
Clp is a function of wing sweep, aspect ratio and the wing’s lift curve slope. An

aircraft with a straight, highly efficient, high-aspect-ratio wing would have a large
negative value of Clp and hence would exhibit high roll damping. Thus, a fighter air-
craft with highly swept, thin, low-aspect-ratio wings would exhibit poor roll damping.
Any roll motion the aircraft exhibits will be countered by this derivative.
Clβ is often referred to as the lateral-stability or dihedral-effect derivative. This

derivative describes an aircraft’s ability to produce a rolling moment due to a sideslip
angle. For positive lateral stability, a positive sideslip should result in a rolling
moment to the left, this results in a negative Clβ for lateral stability. The num-
ber one contributor to Clβ is an aircraft’s wing. Wing sweep, wing dihedral, wing
position and the wing’s ability to produce lift all greatly effect Clβ . An increase in
wing sweep, wing dihedral and CLα will all produce a corresponding increase in the
magnitude of Clβ (Roskam 1979). The second-largest contributor to Clβ is the ver-
tical tail, because the lift force created on the tail by a sideslip angle produces a
moment about the roll axis. A conventional vertical tail has a stabilizing effect on
Clβ .

Previous research has shown that Clβ is directly related to Dutch-roll damping
and therefore to wing-rock motion (Nguyen et al . 1980). Small magnitudes of Clβ
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result in Dutch-roll motion that is highly damped and characterized mostly by
yaw and sideslip. This type of motion is characteristic of a straight-wing aircraft
with negative or no dihedral angle. Fighter aircraft on the other hand, with highly
swept wings, exhibit large-magnitude dihedral-effect derivatives that result in poorly
damped Dutch-roll motion that consists of little yaw and sideslip and a majority
of roll. Roskam (1979) has shown that a negative increase in Clβ results in a corre-
sponding decrease in Dutch-roll damping.

From the above description of the two critical derivatives it appears that Clβ and
Clp are in conflict with each other and, in fact, that is the case. Both derivatives have
the same response to an increase in wing efficiency (lift-curve slope). However, the
most critical wing characteristics appear to be sweep, aspect ratio and dihedral angle.
Thus, disregarding lift-curve slope, the characteristics that would result in a larger
Clp would produce a smaller Clβ . This would be fine if the aircraft in question was
a transport requiring a large straight-wing planform. The wing characteristics which
give a fighter aircraft its increased performance also produce wing rock. A fighter
aircraft with a highly swept wing designed to produce large roll rates will have a
larger negative value of Clβ and a smaller negative value of Clp . Thus, equation (7.12)
makes sense as far as this conflicting relationship between dihedral effect and roll
damping is concerned. Therefore, a fighter aircraft which possesses a small negative
value of Clp and a relatively large value of Clβ will have a greater tendency to exhibit
wing-rock characteristics. These findings agree with the open-loop critical departure
parameters studied by Johnston et al . (1980).

We will use the fact that Clβ and Clp are the most-critical stability derivatives
while designing feedback controllers in the next section.

11. Feedback control to delay the onset of wing rock

In Liebst & DeWitt (1997), various simple fixed-gain feedback control schemes were
tested on the F-15 aircraft in an attempt to delay the onset of wing rock:

1. roll rate to aileron;

2. roll rate to rudder;

3. sideslip to aileron; and

4. sideslip to rudder.

In particular, it was hoped that either roll rate to aileron (to increase effective
Clp) or sideslip to aileron (to increase effective Clβ ) would prove effective. No single
feedback showed a major improvement in the onset of wing rock.

We can examine the effect that roll rate to aileron feedback has upon the trigger
parameter by assuming

δa = −Kpp, (11.1)

and modifying Clp with

(Clp)with feedback = (Clp)without feedback −KpClδa . (11.2)

The graph of the new Xφ with a value of Kp = 50 is shown in figure 6 as the dash–dot
line. We see that only a very small increase in the AOA at which Xφ crosses zero,
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Figure 7. Root locus for the roll-rate-only feedback.

and hence only a small increase in the predicted wing-rock AOA onset. Examining
figure 7 we see that the trigger parameter again accurately predicts the onset of
wing rock if we compare with the actual root locus for the F-15 with feedback as
given in equation (11.1). We see that roll rate to aileron feedback shows no AOA
onset improvement, but the wing-rock mode is now a combined roll/spiral mode at
a significantly lower wing-rock frequency than the open-loop behaviour, which recall
as depicted in figure 4 was a Dutch-roll motion at a much higher frequency.

We can also examine the effect that sideslip to aileron feedback has upon the
trigger parameter by assuming

δa = −Kββ, (11.3)

and modifying Clβ with

(Clβ )with feedback = (Clβ )without feedback −KβClδa . (11.4)

The graph of the new Xφ with a value of Kβ = 20 is shown in figure 6 as the dotted
line. Again, we see that only a very small increase in wing rock AOA onset is pre-
dicted. Examining figure 8, we see that the trigger parameter once again accurately
predicts the onset of wing rock if we compare with the actual root locus for the F-15
with feedback as given in equation (11.3). Again there is not a major improvement
in the wing-rock AOA onset.

The author next combined both the sideslip and roll rate to aileron feedbacks
together. Shown as a dashed line in figure 6 is the trigger parameter plot for a system
which has feedback that is the sum of equations (11.1) and (11.3) with Kβ = 20
and Kp = 50. We see that combined β and p feedback shows no crossing of the
zero line, but does come close near α = 30◦, hinting at a possible wing rock near
α = 30◦. Figure 9 shows the actual root locus for the F-15 with feedback as given
by the sum of equations (11.1) and (11.3). The root locus for the combined β and p
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Figure 8. Root locus for the sideslip-only feedback.

Figure 9. Root locus for the combined roll-rate and sideslip feedback.

feedback shows behaviour like that of the p-alone feedback, i.e. the wing-rock mode
is now a combined roll/spiral mode with a significantly lower wing-rock frequency,
but now with a significant 6◦ increase (i.e. from 21.5◦ to 27.5◦) in AOA onset. The
Xφ predicted no wing rock, but hinted at a wing rock at α ∼= 30◦ which does in fact
match well with the closed-loop root locus. The increase in AOA onset is certainly
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noteworthy, but so is the fact that the wing-rock frequency is reduced, which makes
it much easier for the pilot to correct.

Clearly, more sophisticated lead-lag networks and additional feedback channels
such as φ may produce even greater improvements in AOA onset, but are not part
of this limited investigation.

12. Conclusions

The following conclusions are based on a fighter aircraft with a swept wing manoeu-
vring near the 1-G stall.

1. For an unaugmented aircraft, the rolling oscillations that are commonly referred
to as wing rock are actually unstable Dutch-roll motions. These oscillations
usually precede the stall and for some configurations are a good indicator of
impending departure. An unstable Dutch-roll motion may consist of consider-
able roll and yaw at low AOA, however, this motion becomes more of a pure
rolling motion as α is increased.

2. The trigger parameter and the simple procedure developed to predict wing rock
are fairly accurate for a swept-wing fighter design. Unlike LCDP or Cnβ,dynamic,
which were developed to give a rough indication of unfavourable high-AOA
behaviour, the trigger parameter (Xφ) will predict the actual wing-rock onset
AOA. The developed technique predicted wing-rock onset for the F-15 aircraft
to within one degree of AOA.

3. Key stability derivatives involved in the trigger parameter are: Clp , roll damp-
ing; and Clβ , dihedral effect. The critical situation for wing-rock development
appears to be an increase in dihedral effect with a corresponding rapid decrease
in roll damping as AOA is increased. These derivatives are mostly a function
of the aircraft’s wing. Airfoil type, wing placement, aspect ratio, sweepback
and dihedral all have a large effect on the magnitude and sign of the critical-
stability derivatives. The very wing characteristics which lend themselves to
increased fighter performance also produce the undesirable handling quality of
wing rock.

4. Neither sideslip to aileron or roll rate to aileron fixed-gain feedback alone pro-
vide significant improvement in the wing-rock AOA onset. However, a combi-
nation of both sideslip and roll rate to aileron feedback did provide a significant
improvement in wing rock AOA onset.

13. Recommendations

Since the prediction technique described in this paper is based upon a linearization,
it remains to be seen if the aerodynamic-flow regime of wing rock behaves in a linear
manner as well. Further studies in this area need to be performed to determine if
this linearization method will always work as it did with the F-15 example. In fact,
the entire discipline of determining the aerodynamic mechanisms that cause wing
rock needs further investigation.

The linearization and root-locus techniques described within this paper are well-
accepted techniques often applied to stability and control analyses in the aircraft
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industry, whereas the bifurcation technique, even though it has the ability to pro-
vide insight into an aircraft’s dynamic characteristics, is not yet well accepted in
either industry or academia. I believe that the reluctance by researchers to use the
bifurcation technique is solely due to the lack of adequate software. Until suitable
software is developed it is unlikely that the bifurcation technique will gain wide
acceptance.
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